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EXECUTIVE SUMMARY 

We evaluated the orientation matching step in the M-TIP SPI workflow for potential offloading to 
accelerators.  We ported the code to GPUs, benchmarked it, optimized and down-selected the best 
versions. The accelerated version of the orientation matching code that was developed at LANL (LANL 
GPU v3) is 34-55X faster than sequential, 2.4-4.9X faster than the fastest OpenMP open source version 
we found (FAISS OpenMP) and 1.5-4X faster than the fastest GPU open source version we found (FAISS 
GPU). Summit single-node GPU versions were somewhat faster than Cori GPU.  Image size plays a role; 
mid-range image sizes take more time.  The LANL CUDA multi-node, multi-GPU implementation shows 
mostly linear strong scaling.  I/O also plays a large role; splitting data into parts improves read time and 
burst buffers dramatically improve read times.  This work will be integrated into the M-TIP workflow as 
part of the next milestone ADSE13-193.  
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1. INTRODUCTION 

The Multi-Tiered Iterative Phasing (M-TIP)[1] algorithm for single particle imaging (SPI) is used to 
reconstruct a 3D structure of a molecule from X-ray diffraction patterns of single particles of the molecule 
obtained in light source experiments at facilities such as LCLS using an X-ray free electron laser (XFEL).   
It is a novel algorithm used by the ExaFEL project, because it can reconstruct structural information from 
single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases, 
and underlying structure in a single iterative procedure. 

 

 
Figure 1 Single particle imaging experiment. Image courtesy J. Donatelli. 

 
Particles of a molecule are streamed through the path of a coherent X-ray beam and diffraction patterns 
are captured on detectors behind the particle stream (Figure 1).  Each X-ray diffraction pattern samples a 
slice of the molecule’s 3D diffraction volume at a random orientation.  Slices are combined using the M-
TIP iterative algorithm to reconstruct the 3D structure.  Steps in the algorithm include classification of the 
particle as to conformational state, determination of the orientation of the particle in space, assembly of 
all the diffraction patterns (slices) into a 3D diffraction volume and a determination of the phase, which 
yields the molecular structure (Figure 2). 
 
 
 

 

   

Figure 2 Steps in the M-TIP algorithm. Image courtesy J. Donatelli 
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The M-TIP algorithm for SPI is illustrated below in Figure 3 with the orientation matching step labelled.  
This figure shows that this step occurs on each iteration of the algorithm, thus its speed is critical to the 
performance of the M-TIP algorithm as a whole. 

 

 
Figure 3 Diagram of M-TIP algorithm.  Image courtesy J. Donatelli. 

This milestone focuses on accelerating the orientation matching step in the M-TIP algorithm on GPU for 
high-performance execution on upcoming exascale computers. 

Orientation matching involves comparing the similarity of images from the detector and finding the 
closest matching model. This comparison could be achieved using a brute force pixel-wise comparison or 
by extracting features from images and comparing them. Depending on the requirements such as 
sensitivity to scale and rotation, size of images, etc. one method or the other could be preferable. In the 
case of single particle imaging the detector is placed at a fixed distance at a fixed orientation, therefore, 
either approach is applicable. The advantage of comparing features over brute force approach is the 
reduced number of comparisons. Comparing 𝑁 datasets to 𝑀 reference models, each with 𝑛	𝑥	𝑛 pixels is 
an operation with quadratic complexity, 𝑂(𝑁!). Using 𝑓	(𝑓 < 𝑛	𝑥	𝑛) features reduces the computations 
involved in each comparison. We tried a number of feature extraction approaches that will be described in 
the Technical Approach section. 

Orientation matching involves reading many images and references from files.  The image data and 
references are stored in HDF5 format and reading this data from the files added up to 25 – 120% of the 
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computation time depending on the data sizes. Therefore, along with improving the computational 
performance of orientation matching, the HDF5 reads require optimization. 

 

2. MILESTONE OVERVIEW 

This milestone primarily involved accelerating orientation matching for use in the M-TIP SPI algorithm 
which reconstructs the 3D structure of molecules.  We implemented a number of different algorithms for 
orientation matching both on CPU (for baseline and comparison) and GPU (for acceleration) and also 
optimized the image data reads. Completion criteria for this milestone is GPU-accelerated orientation 
matching kernel code running on Summit and Perlmutter (AKA NERSC-9, but now represented by Cori 
GPU nodes), this report and a highlight slide. Predecessor dependency is the FY20 milestone “ADSE13-
198 Realistic simulation of SPI data accounting for beam features, sample injector and detector, for M-
TIP to ingest.”  Successor dependencies are FY20 milestone “ADSE13-193 Scaling single particle 
imaging with M-TIP on Summit (simulated data)” and FY21 milestones “ADSE13-188 Single particle 
imaging with M-TIP at scale on Perlmutter and Summit (noisy simulated data)” and “ADSE13-179 Run 
M-TIP against realistic simulated data.” 

2.1 DESCRIPTION 

This milestone primarily involved the orientation matching step of the M-TIP SPI algorithm.  Our task 
was to port this step to GPUs, benchmark, optimize and down select.  For this acceleration work we used 
both Summit and Cori GPUs. 

2.2 EXECUTION PLAN 

● Obtain Python orientation matching code and synthetic data 
● Evaluate and benchmark initial code 
● Plan acceleration effort (language, modular design, etc.) 
● Execute port to GPU 
● Benchmark and optimize. 
● Port to Summit and Perlmutter when available. 

2.3 COMPLETION CRITERIA 

Completion criteria is the code [2], this report and a highlight slide. 

2.4 MILESTONE DEPENDENCIES 

2.4.1 Milestone Predecessors 

Predecessor dependency is the FY20 milestone “ADSE13-198 Realistic simulation of SPI data 
accounting for beam features, sample injector and detector, for M-TIP to ingest.” 

2.4.2 Milestone Successors 

Successor dependencies are FY20 milestone “ADSE13-193 Scaling single particle imaging with M-TIP 
on Summit (simulated data)” and FY21 milestones “ADSE13-188 Single particle imaging with M-TIP at 
scale on Perlmutter and Summit (noisy simulated data)” and “ADSE13-179 Run M-TIP against realistic 
simulated data.” 
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3. TECHNICAL WORK SCOPE, APPROACH, RESULTS 

3.1 WORK SCOPE 

The scope of this milestone is to develop the GPU acceleration of the orientation matching.  The I/O 
performance for reading the images is also included, because it was found to have an impact. 

3.2 DATASETS 

Some background on image data for SPI.   

● Size:  Typically, the detector pixels are binned by a factor of 4 (or 8). One can expect an image size 
of 256x256 (or 128x128). Future LCLS2 detectors may be larger ( 512x512). 

● Number of data images: Big particles like viruses at low resolution scatter many photons, hence 
require less snapshots, so ~3k images are typical. LCLS2 will look at small proteins at high 
resolution, so one can expect around 600k images.  Refer to Table 1 of [3].  Numbers of images 
can be multiplied by 10x to 50x if studying conformations and heterogeneity. 

● Number of reference images:  Depending on the noise, you could assume 2x~10x less than number 
of data images. 

For our approach, we used two datasets, one smaller and one larger. 

These datasets include “data” images (XRD at unknown orientations) and “reference” images, which are 
images of XRD for which we know the orientation.  Datasets are available from ExaFEL SLAC staff 
upon request. 

6NYF-Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 1 (OA-1) [4] (simulated 
via a cryoEM simulation)  

This data set has 19996 data images and 3599 reference images, represented as 
single precision - float32.  The 6NYF data used is from a cryoEM simulation 
that was just noisy enough so that the particles were not visible to the eye.  All 
the comparisons across libraries and the LANL CUDA codes are made using this 
dataset as it fits in a single GPU. 

 

 

2CEX-Structure of a sialic acid binding protein (SiaP) in the presence of the sialic acid analogue 
Neu4Ac2en [5] (simulated by ExaFEL’s XRD simulator, pysingfel)   

This data set had a total of 500,000 images. They are partitioned into 400,000 
data images and 100,000 reference images. The 2CEX data used is simulated 
noise-free data created using the pysingfel simulation code which was created 
for the ExaFEL project in milestone ADSE13-198. The multi-GPU multi-node 
implementation scaled to the larger number of nodes on Summit uses this 
dataset. 

 

Figure 4 6NYF. Image courtesy [4]. 

Figure 5 2CEX.  Image courtesy [5]. 
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3.3 EUCLIDEAN DISTANCE AND K-NEAREST NEIGHBORS 

The Euclidean distance is computed across each data image with respect to each reference image. The 
Euclidean distance between a data images and a reference image with 𝑛-dimensions can be represented as  

𝑑𝑖𝑠𝑡 = 12(𝑎" − 𝑏")!
#

"$%

	

Where, 𝑎 = (𝑎%, 𝑎%, … , 𝑎#) is a data image, and 𝑏 = (𝑏%, 𝑏%, … , 𝑏#) is a reference image. 

For a dataset with 𝑚 data image and 𝑛 reference images with 𝑑 dimensions, the matrix dimensions of the 
data images is 𝑚 × 𝑑, reference images is 𝑛 × 𝑑, and the computed Euclidean distance matrix is 𝑚 × 𝑛. 
So, the value at row 𝑥 and column 𝑦 in the Euclidean distance matrix is the computed Euclidean distance 
of the data image present at row 𝑥 in the data images matrix, and of the reference image present at the row 
𝑦 in the reference images matrix. 

The weighted Euclidean distance incorporates the feature weights 𝑤 on each dimension.  

𝑑𝑖𝑠𝑡 = 12𝑤"(𝑎" − 𝑏")!
#

"$%

	

 

For noiseless data some kind of weighted Euclidean distance is usually good. With noise, a distance-
based on maximum likelihood is typically optimal, and can often be represented by weighting the 
Euclidean distance by the variance of the noise. 

The k-Nearest Neighbor (kNN) algorithm is used to compute the k-nearest neighbors for each data image 
across the reference images. The kNN algorithm involves computing Euclidean distance for various data 
images with respect to the reference images, and uses a sorting algorithm (such as heapsort) to sort the 
distances. 

3.4 SEQUENTIAL AND MULTI-THREADED ORIENTATION MATCHING ALGORITHMS AND 
IMPLEMENTATIONS 

Sequential Python v1 

This version uses single-threaded Scikit-learn’s [6] Euclidean distance library. The data and the reference 
images are read into memory once. Ten nearest neighbors are computed. 

Sequential Python v2  
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This version uses single-threaded Scikit-learn’s KNeighborsClassifier library.  The ten nearest neighbors 
are computed using brute-force search option to compute nearest neighbors. 

Scale-Invariant Feature Transform (SIFT) 

Scale-Invariant Feature Transform (SIFT) [7] is used in computer vision to detect and describe local 
features in images. SIFT extracts large collection of feature vectors that are invariant to image translation, 
scaling, and rotation, partially invariant to illumination changes and robust to local geometric distortion 
using the following major computation stages:  scale-space extrema detection, keypoint localization, 
orientation assignment, and keypoint descriptor. SIFT keypoints (features) can be extracted for both data 
and reference images, which can be individually compared to find similarity. We used the fast variant of 
SIFT known as Speeded-UP Robust Features (SURF) [8], which approximates some of the computations 
in SIFT for faster feature extraction. However, the feature extraction time for 1500 data images and 600 
reference images with 384 x 384 pixels each was around 148 s. This was much higher than the brute force 
method of pixel-wise comparison, which took around 6 s for the same data set and hence was not pursued. 
In addition, the scale and rotational invariance offered by SIFT is not necessary as the detector is placed 
at a fixed distance at a fixed orientation throughout the experiment. 

Feature extraction using Deep-Neural Networks 

In order to reduce the time taken for feature extraction, we tried using neural networks. One of the 
problems associated with deep neural networks is that they are more difficult to train. Therefore, 
techniques like residual learning [9] are used to ease the training of networks that are substantially deeper 
than those used previously. However, for the purpose of our problem, we just need to extract the features 
in images rather than classifying them into categories. Hence, we used transfer learning, where a pre-
trained Resnet-50 model trained on the ImageNet dataset was adopted. This dataset takes images of size 
224 x 224 and extracts 1000 features for each image. Even this approach took a substantial 111 s for 
feature extraction for 1500 images and 600 references and hence was discontinued. 

Histogram feature matching 

As we saw in the previous two approaches, the feature extraction time was significantly higher compared 
to the brute-force pixel-wise comparison. So, we started looking for a very simple feature extraction 
strategy and tried the histogram-based approach. In this approach, we computed the histograms of the 
data and reference images organized into 256 bins and computed the correlation between the histograms 
as a measure of similarity. Even though this approach was faster than the previous two approaches, it was 
still slightly slower than the brute-force approach.  

FLANN C OpenMP  

We tried a number of OpenMP orientation matching codes using the C-based FLANN scalable nearest 
neighbors library [10,11].   Of the nearest neighbor search algorithms, we tried Linear (brute force), 
KDtree, Autotuned and Kmeans.  We found Linear to be the fastest and Kmeans was not used because the 
outputs were different from what was expected (compared to brute force). 

FAISS C OpenMP  

This version using OpenMP was significantly faster than the FLANN versions. 
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3.5 CUDA-BASED GPU ACCELERATED EXPLORATIONS OF ORIENTATION MATCHING 
ALGORITHMS AND IMPLEMENTATIONS 

The proposed orientation matching implementation is a k-Nearest Neighbor (kNN) algorithm, which is 
used to compute the k-nearest neighbors for each data image across the reference images. The kNN 
algorithm involves computing Euclidean distance for various data images with respect to the reference 
images, and a heap sort algorithm implementation. In the proposed method, both the Euclidean distance 
and the heap sort implementations are developed using CUDA programming model.  

3.5.1 CrabCUDA 

CrabCUDA [12] is an open source Python package that implements a GPU accelerated version of 
Scikitlearn. As the idea of feature extraction was proven to be computationally expensive from our 
testing, we tried using the accelerated version of the brute-force comparisons.  The GPU-accelerated 
Python version using CrabCUDA is about twice as fast as the Scikitlearn CPU version, and is slower than 
other GPU implementations discussed in later sections.  

3.5.2 cuML 

CuML [13] is developed for the NVIDIA Rapids library.  This Python version of orientation matching, 
uses the GPU version of “k-neighbors” and is much slower than the FAISS and LANL CUDA version on 
a single node. 

3.5.3 FAISS CUDA Version 

FAISS [14] is Facebook’s library for similarity search for very large datasets. The FAISS library uses 
variant of batcher's bitonic sorting [15] and IVFADC indexing [16].  

3.5.4 Background to LANL CUDA Versions 

CUDA Tiling Method 

In the CUDA tiling method, tiles of data from both the data images and the reference images are copied 
into shared memory one at a time. A local Euclidean distance is computed for each tile and the distances 
are summed. Each element in the Euclidean distance is computed in each thread of the CUDA core. The 
tiling of the data can be represented as shown in Figure 6. 𝑚 is the number of data images, 𝑛 is the number 
of reference images and 𝑑 is the size of each image. 
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Figure 6 Illustration of the CUDA tiling method. 

The basic CUDA implementation kernel is summarized in the algorithm below:	

	

CUDA Heap Sort Implementation 

The Euclidean distances computed need to be sorted to identify the minimum distance reference 
images. Many sorting algorithms exist for finding out the minimum values in the data. In this 
implementation, the heap sort algorithm from [14] is ported onto GPU using the CUDA programming 
model. Each thread in the CUDA blocks computes the heap sort algorithm for one data image. As a result, 
a total of data images number of threads are invoked in CUDA.  

On a single GPU implementation, since the Euclidean distances with respect to all the reference 
images are computed on the same GPU, no data communications are required. But in a multi-GPU 
implementation, a different set of reference images are used in the GPUs in the 𝑥-direction with respect to 
each data image. As a result, data communication is required across GPUs which compute the Euclidean 
distance for the same data images (across GPUS in the same row of the multiple-GPU layout).   But 
transferring the entire Euclidean distance matrix computed in each GPU will result in data transfers with a 
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huge amount of data. Instead, each GPU computes the Euclidean distance and the heap sort algorithm on 
the local data images and the reference images. Then only the local 𝑘-Nearest Neighbors of the data 
images is transferred to the first GPU in the row, and the first GPU once again computes the 𝑘-Nearest 
Neighbors across the data obtained from other GPUs.  

The data communication between GPUs can be represented as below in Figure 7.  The GPU1, GPU 2, 
GPU 3 which are in the same row will have the same data images but different reference images. 
Similarly, GPU 1, GPU 4 and GPU 7 which are in the same column will have the same reference images 
but different data images.  The local 𝑘-Nearest Neighbors of the data images are transferred to the first 
GPU in the row, and the first GPU once again computes the 𝑘-Nearest Neighbors across the data obtained 
from other GPUs. 

 

Figure 7 Data communication between GPUs for k-Nearest Neighbots algorithm	

 

3.5.5 LANL CUDA v3 and v5 Implementations 

Previous explorations using available CUDA libraries showed that this direction is promising so we 
focused our efforts on implementing our own faster version of the orientation matching in CUDA.  After 
implementing a few CUDA versions which we call LANL CUDA vX, the most promising were versions 
v3 and v5.  We will not detail v1, 2 and 4 in this report. 

The LANL CUDA v3 and v5 implementations are an extension to the basic CUDA kernel 
implementation, also using the CUDA tiling method and heapsort. In the basic CUDA implementation, 
each CUDA thread computes the Euclidean distance between one data image and one reference image. 
This is done by iteratively copying data into shared memory and computing the 𝐿2 norm (distance) 
locally. In order to compute image similarly, only the squared difference is sufficient. Hence, we omit the 
square root to reduce the total number of computations performed. In the CUDA memory hierarchy, the 
memory access latency is as follows: global memory > shared memory > registers. Therefore, the data 
load transactions are reduced as the data is copied into shared memory using a coalesced memory access 
pattern for optimal memory accesses, and shared memory is used in the computations.  

In the LANL CUDA v3 and v5 implementations, we take advantage of the register memory by 
copying data from shared memory to register memory. In addition, unrolling is used to compute multiple 
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Euclidean distance calculations per thread, which increases the number of in-flight instructions, thereby, 
resulting in betting instruction level parallelism. This also results in more independent memory load/store 
operations and effective register utilization in a single thread to yield better performance as memory 
latency can be hidden. The reference images are arranged in the 𝑥-direction of the grid, and the data 
images in the 𝑦-direction. Each thread in the logical x-direction of the thread block computes the 
Euclidean distance for reference images with respect to one data image and vice-versa.  

In LANL CUDA v3, we compute the Euclidean distance between 4 data images and 4 reference 
images per thread, resulting in a 4x4 distance matrix. In contrast, the LANL CUDA v5 uses 6 data and 6 
reference images. In addition, the LANL CUDA v5 is a multi-GPU implementation targeted towards 
larger datasets, where the Euclidean distance for a group of images is computed per GPU. The data 
distribution scheme of reference images along the logical x-direction and data images along the logical y-
direction is extended across multiple GPUs as shown in Figure 8.   𝑚 is the number of data images and 𝑛 
is the number of reference images 

 
Figure 8 Data distribution scheme for reference images. 

In this data layout, each GPU receives a third of data and reference images and Euclidean distances can 
be computed independently without requiring any communication between GPUs.  
We implemented two versions of the LANL CUDA vX codes to compute the weighted and unweighted 
Euclidean distances. LANL CUDA v3 performs better than v5 for weighted Euclidean distances, whereas, 
v5 is better for unweighted Euclidean distances. The results shown in this report using different available 
libraries and single GPU cuda implementation uses unweighted Euclidean distance and only the multi-
GPU LANL CUDA v3 uses weighted Euclidean distance. If weighted Euclidean distance is preferred, one 
could pre-weight the data and reference images with the unweighted versions. 
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3.6 SUMMARY OF ORIENTATION MATCHING ALGORITHMS EXPLORED AND IMPLEMENTED 

Table 1 Summary of algorithms 

Algorithm or Version Execution Type Origin Notes 

Brute Force  Sequential Python sklearn -
euclidean_distances and 
numpy - argpartition 

Pixel-wise comparison; 
unweighted 

Brute Force  Sequential Python sklearn  - k-
nearest neighbors 
(KNN) 

Pixel-wise comparison 
with KNN matching; 
unweighted 

Scale-Invariant Feature 
Transform (SIFT) 

Sequential OpenCV library computer vision 
approach to extract 
features; unweighted 

Deep-Neural Networks 
(DNN) 

Sequential ResNet-50 model Feature extraction using 
transfer learning  

Histogram feature 
matching 

Sequential original Compute correlation 
between histograms 

FLANN C OpenMP 
Linear, KDTree, 
Autotuned and Kmeans  

Multi-threaded CPU FLANN library Fastest FLANN was 
Linear.  K-means didn’t 
match base output; 
unweighted 

FAISS OpenMP  Multi-threaded CPU FAISS library Fastest OpenMP 
version tested 

CrabCUDA  CUDA GPU CrabCUDA library CUDA version of 
Skikit-learn, 2x faster 
than sequential; 
unweighted 

CuML CUDA GPU NearestNeighbors 
library from CuML 

unweighted 

FAISS GPU CUDA GPU FAISS library  Next fastest to LANL 
CUDA; unweighted 

LANL CUDA v3 
(weighted and 
unweighted versions) 

CUDA GPU original Euclidean distance 
between 4 data images 
and 4 reference images 
per CUDA thread.  
Better for weighted. 

LANL CUDA v5 
(weighted and 
unweighted versions) 

CUDA GPU original Euclidean distance 
between 6 data images 
and 4 reference images 
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per CUDA thread.  
Better for unweighted. 

 

3.7 I/O OPTIMIZATION 

The image data and references are stored in HDF5 format and reading this data from the files added up to 
25 – 120% of the computation time depending on the data sizes. Therefore, along with improving the 
computational performance of comparisons we also optimized the HDF5 reads.  

One of the first approaches we tried was to use multiple MPI processes to access the HDF5 file, which 
improved the data read time by a factor of 1.5 – 5 depending on the file size. Later, the files were broken 
into smaller parts and accessed using multiple MPI processes.  

3.8 RESULTS 

3.8.1 Orientation Matching 

Library Comparison on Cori  

Below in Figure 9 we compare the various libraries we tried: sequential (on single core), multi-threaded 
FAISS (40 threads and fastest multi-threaded version that we tested), GPU FAISS (on one GPU) and 
LANL CUDA v3 (on one GPU).   All tests were done on Cori GPU nodes and used unweighted 
Euclidean distance. Tests used the 6NYF dataset.  

 

Figure 9 Comparison of various implementations of orientation matching algorithm on different image sizes. 
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Notes:  All the 128x128, 256x256 and 384x384 size images are timed with 19996 data images and 3599 
reference images.  The 512x512 size images are timed with 11000 data images and 2500 reference images 
due to a memory limit on GPUs.  The 1024x1024 size images are timed with 2500 data images and 1000 
reference images due to a memory limit on GPUs. 

Conclusions: GPU (FAISS and LANL CUDA) implementations offer speedup over sequential and multi-
threaded implementations.  The LANL CUDA v3 implementation is 34-55X faster than sequential, 
2.4-4.9X faster than FAISS OpenMP and 1.5-4X faster than FAISS GPU.   

 

Cori Versus Summit Single GPU LANL CUDA Version 

Below in Figure 10 and 11 we measure LANL CUDA v5 (unweighted) and v3 (weighted) 
implementation on a single GPU on both Cori GPU and Summit.  We use the  6NYF dataset.  Notes:  All 
the 128x128, 256x256 and 384x384 are timed with 19996 data images and 3599 reference images.  The 
512x512 is timed with 11000 data images and 2500 reference images due to the memory limit on GPUs.  
The 1024x1024 is timed with 2500 data images and 1000 reference images due to the memory limit on 
GPUs. 

 

 

Figure 10 Performance of LANL CUDA unweighted algorithm on Summit and Cori 
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Figure 11 Performance comparison of LANL CUDA weighted algorithm on Summit and Cori 

Conclusion: We measured faster overall performance on Summit. NVlink on Summit reduces the CPU-
GPU communication compared to the PCIe Gen3 on Cori GPU nodes.  Not shown here, but using pinned 
memory on the host side reduces the CPU-GPU data transfer time by a factor of 3.  Also, image size plays 
a role; mid-range image sizes seem to take more time. 

Multi-node, Multi-GPU LANL CUDA Version Strong Scaling on Summit 

Figure 12 shows strong scaling of LANL CUDA implementation on Summit, with partitioned data and 
reference images.  The dataset used here was the larger dataset, 2CEX, produced by the pysingfel 
simulation. 

 

 

 

 

 

Figure 12 Strong scaling of LANL CUDA version on Summit. 
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Conclusion:  The LANL CUDA multi-node, multi-GPU implementation shows mostly linear strong 
scaling. Although multi-node scaling was not required for this milestone, we felt it should be measured to 
show our multi-GPU multi-node implementation of orientation matching. 

MPI communication is similar with data images.  When you partition the reference images, the MPI 
communication increases. Communication is explained in Section 3.5.3.  Reference images are spread 
across columns so that increases communication time.  GPUs need to communicate with rank 0 of that 
row.   

Figure 13 shows the LANL CUDA multi-rank single-node weighted Euclidean distance version with the 
6NYF dataset on Summit.  

 

 

3.8.2 HDF5 

Figure 14 shows the graph of the read time for a single HDF5 file compared to the data split into 4 files 
for varying number of MPI processes. This test was performed on a single Haswell node of Cori. 

 

Figure 144 HDF5 read times with increasing MPI processes. 

Figure 133 Strong Scaling of LANL CUDA version over MPI Ranks on a single node. 
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The effect of the number of file parts was also studied and the results are shown below in Figure 15. For 
this run 64 MPI processes were used in total and the number of file parts were varied. We can see that the 
read time improves with increasing number of file parts. 

 

Figure 15 HDF5 read time with increasing number of file parts. 

In order to improve the I/O performance, we made use of burst buffers available on Summit and Cori. 
Burst buffers (BB) are technologies that provide faster I/O based on new solid-state media. On Summit, 
each compute node has a Samsung PM1725a NVMe SSD of capacity 1.6 TB. Cori has 1.8 PB of shared 
burst buffer based on Cray DataWarp that uses flash or SSD technology. The results are summarized in 
Fig. 16 and Fig. 17. We can see that on Summit, with individual BB per compute node, there is ~85x 
improvement in HDF5 read times. 

 

Figure 16 HDF5 read times on Summit. 



 

ECP-U-2017-XXX 17 
 

 

Figure 157 HDF5 read times on Cori (np=64) 

4. RESOURCE REQUIREMENTS 

Person-months for this milestone were 13 person-months.  Perlmutter (Cori GPU) hours were 100, Cori 
hours were 10,549 and Summit hours were 3390.   

5. CONCLUSIONS AND FUTURE WORK 

We have accelerated the orientation matching portion of the single particle imaging M-TIP image 
reconstruction algorithm on GPU on Cori and Summit.  The LANL GPU v3 implementation is 34-55X 
faster than sequential, 2.4-4.9X faster than FAISS OpenMP and 1.5-4X faster than FAISS GPU.   Summit 
single-node GPU versions were somewhat faster than Cori GPU.  Image size plays a role; mid-range 
image sizes take more time.  The LANL CUDA multi-node, multi-GPU implementation shows linear 
strong scaling.  I/O also plays a large role; splitting data into parts improves read time and burst buffers 
dramatically improve read times.   

In the near term we will be looking at performance portability for this code on upcoming exascale 
platforms (Aurora and Frontier) via using their test clusters (Iris and Tulip).  We will also incorporate this 
scalable multi-GPU and multi-node orientation matching implementation into the cartesian-based M-TIP 
algorithm.  In the process of completing this milestone, we also investigated the impact of HDF5 read 
times for the input data to orientation matching and concluded that burst buffers will significantly 
improve performance of the algorithm. 
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